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Abstract.

We apply simple elastic network models to study some properties of the unfolding of apoflavo-
doxin, a protein that shows a three-state thermodynamic behavior under thermal denaturation, as
revealed by extensive analysis of wildtype and mutant variants. The intermediate of apoflavodoxin
presents an overall structured core, with just a part of the protein being substantially unfolded [1]. In
agreement with these results, we have been able to identify, using different models and methods, the
more mobile regions in the thermal unfolding of the protein. We also discuss how the predictions
obtained from these models could help in designing new experiments.
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THE APOFLAVODOXIN FROM ANABAENA

Flavodoxin is a 169 residue-long protein involved in electron transfer processes in
Anabaena PCC 7119 and many other procaryots. Its "apo"” form (1FTG), which lacks the
FMN cofactor, shows a three-state thermodynamic equilibrium behavior under thermal
denaturation [2, 1]. In the intermediate, a large part of the protein remains close to the
native fold, but there is a non-contiguous 40-residue region which appears unfolded.

Experiments suggest that the apoflavodoxin thermal intermediate, which appears at
317.3 K, is mainly formed by the packing of helices ghdtrands. In contrast there are
three loops quite weakened. The most significative regions are loops 57-60, 90-100, that
bind the FMN cofactor and 120-139, which contains a three-strafidgueet [2, 1].

These results, were obtained by performing equilibrigranalysis [1], which does
not allow to "see" directly the structure of the intermediate state, which, due to the
intrinsic technical difficulties, has not been crystallized, nor characterized by NMR. The
hypothetical structure of the intermediate has been deduced thanks to the interpretation
of the changes in the relevant and residual stability of the protein, which allows to assess
if a mutation changing the stability of the native state also affects the stability of the
intermediate state, with respect to the unfolded state.

For this reason, in order to get a better insight on the behavior of the system, it can
be useful to obtain results using different theoretical models, see if such results support
the standard interpretation, and look for suggestions of new experiments that can further
confirm this view.
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FIGURE 1. Bfactors calculated from the GNM (scaled with a factor) usrthe experimental Bfactors

The simplest model we have used is the so-called "GaussiavoleModel" (GNM)
which only considers the topology of the native state. Wet stiudying its standard
version [3, 4, 5], which allows us to predict the active regiof the protein (that coincide
with the most mobile ones). Moreover, conformational mudiof the native state, as
well as coupled movements between regions, can be detddied.the characteristics
of the dynamics of the relevant protein regions is understoo

Next, we study an extended version of the GNM, introduced hghkletti and
coworkers [6, 7]. This version allows for breaking of nata@ntacts, thus driving the
protein to thermal unfolding. We deal with this model in twery different ways:
through a self-consistent approximation (an analyticathoe assisted by numerical
calculation) and by molecular dynamics simulations usigagevin bath (numerical
simulation of the dynamics of the protein).

Finally, we compare the results with all-atom simulatiohghe protein dynamics at
two different bath temperatures. We present a discussi@uopreliminary results in
the light of their capability to support the three-state elddr apoflavodoxin thermal
unfolding.

MODELS: TWO STATISTICAL-MECHANICS APPROACHES

A.- Gaussian Network Model
As a first approach, we have studied the behaviour of proteianaelastic network

[4]. Recently, this kind of models have been developed toinktdormation about
the mechanical properties of the native conformation [H]4,his model will give us
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FIGURE 2. First and second normal mode

insight on the elastic properties of the crystallized dtee The approximation is as
follows: the protein is reduced to a set of nodes linked witkirtneighbours which are
at a distance less than a given cutaff)( In this approximation, it is straightforward
the calculation of the normal modes, cooperative motionsd, the correlation of the
fluctuation of the nodes. The more contribution of a set ofesad the lowest frequency
modes, the more flexible is the region. Here, we will focus e tivo low frequency

modes. Our interest is on the flexibility of the loops thatlwitobably lead to the

intermediate state.

The Kirchoff matrix|", obtained from the crystallized structure, is build asda:
Mj=-1lifi#jandR j<rc 0ifi#jandR j>rcand—73; ;i ;if i = j. We define
R as the position of th€, atom of residué andR; j represents the distance between
Cq'siand jin the crystallized structure.

From this matrix the correlation of the fluctuations arouridima can be extracted:

r—unuT 1= S A- ol <A AR = R8T 1
= *zzk kYK R j*Ti,ja 1)
k=

beingti the k-th column of U (that is, k-th eigenvectorlof. This column is proportional
to the k-th normal mode of the systefis the diagonal matrix of eigenvalugg where:

AM=0<Ar<...<Ap. (2)

Mean square deviations of eaCh in the model and the experimental Debye-Waller
(Bj) factors measured by X-ray difraction are related with theagion
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FIGURE 3. The values of AR - AR;)/ (AR?)Y/?(AR?)/2 extracted from the GNM. The upper diagonal
pixels represents the positive values, the darker the momelated residues. Below the diagonal the
negative values are represented.
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wherey is a scale parameter to be fitted. The other free parameter Best fit (see
Figure 1) has been achieved with= 7 A which is a value in agreement with those
ones used in literature [4].

Figure 2 plots the first and the second modasandt,. The first one corresponds
to a breathing motion, where half of the structure move agdime other half. This
mode does not present interesting structural featureszdhes with less contribution
are in the core or are playing the role of “elbow” in hinge roas. The second mode is
more interesting because four relevant regions can beifigentrhe three loops (57-60,
90-100, 120-139) are correlated between them and unctadehdth the region around
20-30, taking part in this way on a collective motion whicpresent an important part
of the total fluctuation.

Normalized correlations are shown in Figure 3. A high catieh can be observed
between the regions of the protein we are interested. In feetcan see in the figure
how the 120-139 loop is correlated with the loops 57-60 and®@ This corroborates
the observations given in the second normal mode.

In conclusion, we see how this model, based in the proteioldgyy, reveals a cooper-
ativity between regions which can take part in the thermi@rinediate. This approach
allows us, as well, to do the normal modes analysis in a less tionsuming way than
using an all-atom simulation program. These normal modigedémportant informa-
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tion about long range cooperative effects. In our case, these results are a good starting
point to check the hypothetical intermediate structure deduced from the experimental
work with theoretical models.

B.- Extended GNM with contact breaking: self-consistent
approximation

Now, we introduce the possibility to break contacts, and study the effect of tempera-
ture on the loops unfolding. To this end, we consider the Hamiltonian [6, 7]:

LI = 1
H=5K i; (Fiji+1 *?ﬁi+1)2+§% &0 [T~ — R 6, (4)

where 6 ; = G)(R2 — (M — F’fj)z) (the Heaviside function); ; = Fi — Fj andf, the
same for the native conformatiafy, j is the native contact map for the proteily { = 1
if residues i and j are in contact in the native structure (in our case: at a distance less than
6.5 A), A j = 0 otherwise).

As a first approach, we resort to a self-consistent approximation to evaluate analyti-
cally the partition function and all relevant thermodynamical quantities.

Upon replacingd, j by a parametep; j the Hamiltonian turns into a sum of quadratic
terms, which allows analytical integration of the partition function:

Z(T)

exp KZAi pi / . d3riexp —}ZX’iMi X
2T 5 )] )] ||:_l 2|’J !

3(N-1)
2

3
= Ni(2m) 2 (det A)?, 5)
where (') means that we are calculating the determinant of the matrix without consider-
ing the eigenvalud; = 0 (that is, détA = [N, A)).
From the expression above, all the relevant thermodynamical quantities can be evalu-
ated: we have, for the average energy:

C3N-1T R
<E>—T_?§Al7jpl,1(-r)7 (6)
and the average number of native contacts or "native-state-overlap";
Yicjhijpij
Q="F"—"F—""- (7)
Yicjlij
The parametep; ; must be evaluated self-consistently, that is:

pi,j:<@(R2—(?i,j—f'fj)2)>o, (8)
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where the average on the right dependsppn This average can be calculated by the
integral:

1 N
i =7 [ []enexs(-BHolo(R - iy 167 ©)

wherefd = 1/T andHy is obtained from Eq. (4) upon substituting the functiénswith
the parameterg; ;.
By definingX = F; — P, this expression results in:

1N R2 1

pij = Z/_I_ldsri@(Rz— (Yi —2])2) exp [2T ZALJ"| exp [—2 ZY‘M‘JXJ' ,  (10)

i= [y l]

with the M the matrix defined by
2
M)i,j = &j (K(Z— d1—GN)+ T ZAU pu) +
2

+ (1-4) (K(5j,i+1+5j.i1) - TAi,jIOi,j> . (11)

The integral can be calculated by a Laplace Transform. By tRéras the variable t, we
need to calculate:

. N
f(f(t))—f[/ﬂd%@(t—(zi >exp[ 32 KM%

and developing the calculation:

Z(f()) /”dgmexp[zleIJX]] ) (13)

with the new matridQy | = M| +2(d (O + ,j) — &id.j— 4. j)S-

Now the integral is reduced to the same form as in the partition function, above. The
problem with matrixQ andM is that, due to the translational invariar¢e— X + & of
the problem, the sum of the elements on each of their rows and columns is zero: this fact
yields a null determinant, producing a singularity in the evaluation of the averages.

We can follow McCammon and coworkers [8] to solve the problem by considering
and extra spring on the terminal resididswe add an extra terrvéyzﬁ, to the hamilto-
nian, that preserves the structure of the quadratic form of the hamiltonian, and hence the
form of the matrixM, but removes the translational invariance. The extra contribution to
the free energy can be explicitly calculated.

With this approach, after performing the gaussian integral and the inverse Laplace
transform, and restoring the variali¥e the explicit expression of thg j reads:

, (1?9
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b= —jﬁpi,je—pfj +E(pr)), (14)
with:
R = (M) S+ (MY —2(MY) . (15)

pij= 2

where(MY)~1); j is the(i, j)-element of the inverse of the matrix obtained frivhupon
elimination of the Nth row and column. At any temperatpyg will be found iteratively
from the above expression, as described in [6].

We follow [6] in the choice of the parameteiR:= 3, K = 1/15. The native contact
probability per residu€); are defined:

2D pij 16
Q=g (16)

In this study, we first seq;; = ¢ for eachi andj, and focus just on the geometry of the
apoflavodoxin native state: we aim at understanding how ntiuetfolding geometry
is responsible for the thermodynamics of the folding precesd how “trivial" the
resulting thermodynamic behavior appears, as comparedhtoof a random contact-
map.

To this end, we study the behavior of the model with severfémint contact maps:
the original, wild-type one, and many others, obtained mdeen reshuffling of each
residue’s contacts, in such a way that the connectivity oheasidue (i.e., the number
of contacts it makes) is preserved, but the resultant gegrisatompletely random. This
most likely produces non-physical contact-maps, that@beometric constraints, but
due to the nature of the model, where just deviatXjrfsom the equilibrium position are
relevant, the value of the thermodynamical information icayrirom such maps is not
affected, and we are allowed to compare the thermodynantiavier of the different
cases.

Then, we perturb the models introducing a little differatibn among contacts,
choosing a subset and making them weaker, with their enezipgld1e: we want to
test in this way how the introduction of a "sequence" changesésults obtained for
the homogeneous case.

We choose the contacts to be weakened with three differdietrpa:

1. all contacts of residues in the region 94 - 124 (corresjmantb a helix placed in
the surface of the native wild-type protein)

2. randomly chosen contacts (irrespective of the residuasvied in the contact)

3. all contacts of residues in the region 57-60, 90-100, 129-that correspond to the
unfolded part of the thermal intermediate, according toeeixpents.

In the first case, there were 263 contacts, in the second @heytl in the last one, 243
contacts in real maps, and 285 contacts in the first case,@waats in the second one
and 291 contacts in the last one for the reshuffled maps, catatal of 649 contacts
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in all cases. We performed the study with several samples of random contacts maps,
obtaining similar results: those reported in the following are typical results.

In Figure 4, 5 and 6 we observe energy, specific heath and average number of native
contacts (Eq. (7))for different groups of results.

Several comments are in order:

1. We cannot find important differences in the thermodynamic behavior obtained with
the original or the reshuffled map, in the homogeneous case of saken if a
quantitative van t'Hoff analysis cannot be carried on in this case, due to the nature
of the self-consistent approximation, if we still consider the ratio of the height by
the width of the peak of specific heat as a reasonable measure of cooperativity,
we see that the reshuffled and original map show practically the same degree of
cooperativity.

2. Things do not change if we weaken the same number of randomly-chosen contact in
the wild type and reshuffled geometry. As expected, the peak moves towards lower
temperatures (due to overall decrease of stability of the folded conformation) and
is somewhat shorter, but native and random geometry still produce almost identical
traces in all figures.

3. In the above two cases, a single peak is present in the specific heat, suggesting a
two-state behavior. This agrees with the simulations performed for the wild type
geometry in the homogeneous case (see following section). Things start changing
when we weaken all the contacts pertaining to a group of residues: we can see that
the specific heat traces of wild type and random geometry becomes increasingly
different as we move to weakening the region of the superficial helix 94-124 and
then to weakening the three experimentally relevant regions 57-60, 90-100, 120-
139. Moreover, the specific heats obtained with wild-type geometry starts showing
a small shoulder at low temperatures in the "helix" case, that becomes a clear peak
when the three different regions are weakened.

Thus, it seems that according to the geometry of apoflavodoxin, the model suggests
a two-state behavior. A three-state behavior only appears when we introduce different
energies for the contacts, roughly mimicking the energetic heterogeneity involved by the
sequence, and arrange the weak contacts in such a way that all the contacts of a group
of residues are weak. This supports the view that the specific sequence of wild type
apoflavodoxin has a central role for the existence of an equilibrium intermediate, a view
which agrees with the observation that the interface, between the three experimentally-
determined unstable regions and the bulk of the protein, is unusually polar.

In Figure 7 we can see, for different temperatures, the average number of contacts
of residuei that are still formed, for each(Eq. (16)), for the homogeneous wild-type
case. We can observe that, also at the transition temperature, when on average half of
the contact are formed, the fluctuation around the average are not very pronounced, due
to the "mean-field" nature of the self-consistent approximation. However, it is possible
to notice that the experimentally relevant regions correspond indeed to regions that are
predicted to be highly unfolded (lo®;). This is especially true for loops 57 - 60 and 120
- 139, while loop 90 - 100 is not as well represented. It should be noticed, though, that
these results are not sufficient to perform a safe prediction, on their basis, of the structure
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FIGURE 4. E versus T for different weakening patterns. In the legeneak helix", "weak random"
and "weak experiments" indicate that the choice of the weakacts is made according to pattern 1, 2 or
3in the text, respectively.

of the intermediate. This could be expected, in the lighthef above results, since we
have seen that the introduction of energetic heterogemeitecessary to reproduce
three-state behavior.

C.- Extended GNM with contact breaking: Langevin dynamics

In this section, we study the Langevin dynamics of the ex¢en@NM model de-
scribed by equation (4). This study will allow us to valid#te results previously ob-
tained and to explore the space of configurations in a motistieavay. Within other
important things, the dynamics will show us the manner thatamis break when the
system is embedded in a stochastic thermal reservoir aeteypeT .

The equations of the motion read as:

G(t) = poi/m qu(t):—Z:—qu,i<t>+nq7i<t>, 17)

wherei is theC, index andg = X, Y,z
In these equations, we control the temperature trough dlohastic termmq,; (t) which
is a Gaussian distributedtcorrelated random noise:

(Nqi(t)Nqj(0)) = 2ymkgT (1) ; , (18)
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where, kg denotes the Boltzmann constant ahds the temperature (for the sake of
simplicity, bothkg andm have been set to unity).

Along a trajectory, we have computed the values of some o¥dhiables previously
defined: the native-state-overl&)T) (Eq. (7)), or the native contact probability per
residueQ;(T)(Eg. (16)) for instance.

In Figure 8, we can see the value@ffor each residue in the protein. Once more, itis
shown that the regions more amenable to broke their cordaethose which are found
in experiments; that is, loops 57 - 60, 90 - 100 and 120-139.

One should note that temperature for unfolding obtainedandevin simulation is
much lower than that calculated in the self-consistent ot his is due to the fact
that, since self-consistency introduce a kind of mean figidraximation, it can not
take into account the large fluctuations observed in thelsitions. Indeed, within self-
consistent approximation the contacts are never actualkeln, except in the case when
the correspondingy; is strictly zero: therefore, also in the denaturated confdrons,
there is a small quadratic bias toward the native confoonaiihis results in the need of
a higher temperature to produce the same degree of unfdldigve get in simulations
of the original model.

Hovewer, if we consider the results at the respective tt@nsiemperatures, we can
establish a correlation between the results found withetlsgmulations and with self-
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=5, with Q = 0.028062.0nce more, we can see that loops, eglyesr-60, are more prone to break their
contacts.

consistent approximation made in previous subsection.
In order to find it, we use Pearson correlation coefficientvéf have two sets of N
data,x; andy; , then the Pearson correlation coefficient is calculated as:

i =X (i —Y)
(N—1)scsy
wherexandy are the sample means of each of the data setsamls, are the standard

deviations.

The coefficient can take values from -1 and 1. Conventionalbgolute value of
correlation less than 0.1 indicates no correlation. Theetation is small between 0.1
and 0.29, medium from 0.3 to 0.49, and large above 0.5.

We want also to mention that for the sets of data correspgnttirself-consistent
calculations and Langevin dynamics at the respectiveitransgemperatures, the value
of the correlation coefficient is 0.97, indicating that tledf-£onsistent approximation
correctly grasps the relevant physics of the model, detipitelifference in the numeric
values.

Mxy= ) (19)
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FIGURE 9. RMSD for T =310 andT = 600 along the trajectory of the all-atom Langevin dynamics
simulations

D.- All-atoms simulation

Finally, we analyze the unfolding of the protein using a cate description of
the structure by mean of all-atom molecular dynamics (MD)uwations. Since this
technique is computationally expensive, we restrict dueseto only two temperatures.

Simulations were performed using NAMDI[9] on a 16 paralledga@ssor cluster. A
CHARMM27[10] force field was used, with a cutoff of 12A for nooided interactions.
Protein was embedded in a water sphere of 31A, large enowyloin edge effects along
the simulation run. Langevin dynamics with a friction coséfint of 5ps—* was run up to
3 ns. Two different temperatures, 310K and 600K, were sitedldl he first one, in order
to check the stability of the protein with the simulation graeter used. The second, to
induce a fast thermal unfolding and to observe the pathwiigwied in the process.

After simulation we extract the global RMSD (figure 9) and the ®Mper residue
(figure 10). Figure 9 shows the fast unfolding at high tempeeawhereas the native
structure remains stable giving confidence to the simuiatitn figure 10 we observe
the residues that contribute mostly to RMSD. From the maxingenainima of RMSD of
each residue, we corroborate that previous methods identifore active and less active
zones. In agreement with the previous findings, the looptharamost mobile zones, and
the first to loose their native structure when we perform atia¢ denaturation.
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CONCLUSION

We have used two mesoscopic network models to make a statistechanics study
of the apoflavodoxin unfolding. Within the GNM framework, Wave obtained regions
which are correlated in their motions. This analysis revéadt loops 57-60, 90-100 and
120-139 are the more flexible protein regions. Using thersidd GNM with contact
breaking we have obtained the thermal behavior of the uimigldrocess. This model has
been studied with two approaches: a self-consistent methddhe Langevin dynamics
of the same system. With both methods, we find that the resithet break first the
native contacts correspond to those which present higtbflixiin the GNM analysis.
Finally, preliminary all-atoms MD simulations supporte thbove findings .

At present, we can neither precise the structure of therivgdiate nor support with
evidence the hypothetical intermediate proposed in [1}thi®end, further refinement
of the model, including the introduction of sequence hefengity, is necessary. Such
work is under present development. However, our resultstpoithe right direction,
allowing to mark the regions in the protein candidates to toé&dmn in the equilibrium
intermediate, and possibly suggesting new experimentgséxt on other unexplored
regions.
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