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Abstract.
We apply simple elastic network models to study some properties of the unfolding of apoflavo-

doxin, a protein that shows a three-state thermodynamic behavior under thermal denaturation, as
revealed by extensive analysis of wildtype and mutant variants. The intermediate of apoflavodoxin
presents an overall structured core, with just a part of the protein being substantially unfolded [1]. In
agreement with these results, we have been able to identify, using different models and methods, the
more mobile regions in the thermal unfolding of the protein. We also discuss how the predictions
obtained from these models could help in designing new experiments.

Keywords: protein, gaussian network model, statistical mechanics simple models
PACS: 87.15.Aa,64.60.Cn

THE APOFLAVODOXIN FROM ANABAENA

Flavodoxin is a 169 residue-long protein involved in electron transfer processes in
Anabaena PCC 7119 and many other procaryots. Its "apo" form (1FTG), which lacks the
FMN cofactor, shows a three-state thermodynamic equilibrium behavior under thermal
denaturation [2, 1]. In the intermediate, a large part of the protein remains close to the
native fold, but there is a non-contiguous 40-residue region which appears unfolded.

Experiments suggest that the apoflavodoxin thermal intermediate, which appears at
317.3 K, is mainly formed by the packing of helices andβ strands. In contrast there are
three loops quite weakened. The most significative regions are loops 57-60, 90-100, that
bind the FMN cofactor and 120-139, which contains a three-strandedβ -sheet [2, 1].

These results, were obtained by performing equilibriumφ -analysis [1], which does
not allow to "see" directly the structure of the intermediate state, which, due to the
intrinsic technical difficulties, has not been crystallized, nor characterized by NMR. The
hypothetical structure of the intermediate has been deduced thanks to the interpretation
of the changes in the relevant and residual stability of the protein, which allows to assess
if a mutation changing the stability of the native state also affects the stability of the
intermediate state, with respect to the unfolded state.

For this reason, in order to get a better insight on the behavior of the system, it can
be useful to obtain results using different theoretical models, see if such results support
the standard interpretation, and look for suggestions of new experiments that can further
confirm this view.
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FIGURE 1. Bfactors calculated from the GNM (scaled with a factor) versus the experimental Bfactors

The simplest model we have used is the so-called "Gaussian Network Model" (GNM)
which only considers the topology of the native state. We start studying its standard
version [3, 4, 5], which allows us to predict the active regions of the protein (that coincide
with the most mobile ones). Moreover, conformational motions of the native state, as
well as coupled movements between regions, can be detected.Then the characteristics
of the dynamics of the relevant protein regions is understood.

Next, we study an extended version of the GNM, introduced by Micheletti and
coworkers [6, 7]. This version allows for breaking of nativecontacts, thus driving the
protein to thermal unfolding. We deal with this model in two very different ways:
through a self-consistent approximation (an analytical method assisted by numerical
calculation) and by molecular dynamics simulations using aLangevin bath (numerical
simulation of the dynamics of the protein).

Finally, we compare the results with all-atom simulations of the protein dynamics at
two different bath temperatures. We present a discussion ofour preliminary results in
the light of their capability to support the three-state model for apoflavodoxin thermal
unfolding.

MODELS: TWO STATISTICAL-MECHANICS APPROACHES

A.- Gaussian Network Model

As a first approach, we have studied the behaviour of protein as an elastic network
[4]. Recently, this kind of models have been developed to obtain information about
the mechanical properties of the native conformation [3, 4,5].This model will give us
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FIGURE 2. First and second normal mode

insight on the elastic properties of the crystallized structure. The approximation is as
follows: the protein is reduced to a set of nodes linked with their neighbours which are
at a distance less than a given cutoff (rc). In this approximation, it is straightforward
the calculation of the normal modes, cooperative motions, and the correlation of the
fluctuation of the nodes. The more contribution of a set of nodes in the lowest frequency
modes, the more flexible is the region. Here, we will focus on the two low frequency
modes. Our interest is on the flexibility of the loops that will probably lead to the
intermediate state.

The Kirchoff matrix,Γ, obtained from the crystallized structure, is build as follows:
Γi, j =−1 if i 6= j andRi, j ≤ rc, 0 if i 6= j andRi, j > rc and−∑i, j 6=i Γi, j if i = j. We define
Ri as the position of theCα atom of residuei andRi, j represents the distance between
Cα ’s i and j in the crystallized structure.

From this matrix the correlation of the fluctuations around minima can be extracted:

Γ = UΛUT Γ−1 =
N

∑
k=2

λ−1
k ~uk~u

T
k

〈

∆Ri ·∆Rj

〉

=
KBT

γ
Γ−1

i, j , (1)

being~uk the k-th column of U (that is, k-th eigenvector ofΓ). This column is proportional
to the k-th normal mode of the system.Λ is the diagonal matrix of eigenvaluesλk, where:

λ1 = 0 < λ2 < ... < λn . (2)

Mean square deviations of eachCα in the model and the experimental Debye-Waller
(Bi) factors measured by X-ray difraction are related with the equation
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FIGURE 3. The values of〈∆Ri ·∆Rj〉/〈∆R2
i 〉1/2〈∆R2

j 〉1/2 extracted from the GNM. The upper diagonal
pixels represents the positive values, the darker the more correlated residues. Below the diagonal the
negative values are represented.

BGNM
i =

8π2

3
〈∆Ri ·∆Ri〉 =

8π2KBT
3γ

Γ−1
i,i , (3)

whereγ is a scale parameter to be fitted. The other free parameter isrc. Best fit (see
Figure 1) has been achieved withrc = 7 Å which is a value in agreement with those
ones used in literature [4].

Figure 2 plots the first and the second modes,~u1 and~u2. The first one corresponds
to a breathing motion, where half of the structure move against the other half. This
mode does not present interesting structural features. Thezones with less contribution
are in the core or are playing the role of “elbow” in hinge motions. The second mode is
more interesting because four relevant regions can be identified. The three loops (57-60,
90-100, 120-139) are correlated between them and uncorrelated with the region around
20-30, taking part in this way on a collective motion which represent an important part
of the total fluctuation.

Normalized correlations are shown in Figure 3. A high correlation can be observed
between the regions of the protein we are interested. In fact, we can see in the figure
how the 120-139 loop is correlated with the loops 57-60 and 90-100. This corroborates
the observations given in the second normal mode.

In conclusion, we see how this model, based in the protein topology, reveals a cooper-
ativity between regions which can take part in the thermal intermediate. This approach
allows us, as well, to do the normal modes analysis in a less time consuming way than
using an all-atom simulation program. These normal modes deliver important informa-
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tion about long range cooperative effects. In our case, these results are a good starting
point to check the hypothetical intermediate structure deduced from the experimental
work with theoretical models.

B.- Extended GNM with contact breaking: self-consistent
approximation

Now, we introduce the possibility to break contacts, and study the effect of tempera-
ture on the loops unfolding. To this end, we consider the Hamiltonian [6, 7]:

H̃ =
T
2

K
N−1

∑
i=1

(~r i,i+1 −~r0
i,i+1)2 +

1
2 ∑

i6= j

εi, j ∆i, j
[

(~r i, j −~r0
i, j)

2−R2]θi, j , (4)

whereθi, j = Θ
(

R2− (~r i, j −~r0
i, j)

2
)

(the Heaviside function),~r i, j =~r i −~r j and~r0
i. j the

same for the native conformation.∆i, j is the native contact map for the protein (∆i, j = 1
if residues i and j are in contact in the native structure (in our case: at a distance less than
6.5 Å), ∆i, j = 0 otherwise).

As a first approach, we resort to a self-consistent approximation to evaluate analyti-
cally the partition function and all relevant thermodynamical quantities.

Upon replacingθi, j by a parameterpi, j the Hamiltonian turns into a sum of quadratic
terms, which allows analytical integration of the partition function:

Z(T) = exp

[

R2

2T ∑
i, j

∆i, j pi, j

]

∫ N

∏
i=1

d3r i exp

[

−1
2∑

i, j
~xiMi, j~x j

]

= N− 2
3(2π)

3(N−1)
2 (det′ A)

− 3
2 , (5)

where (’) means that we are calculating the determinant of the matrix without consider-
ing the eigenvalueλ1 = 0 (that is, det′A = ∏N

i=2 λi).
From the expression above, all the relevant thermodynamical quantities can be evalu-

ated: we have, for the average energy:

〈E〉 =
3(N−1)T

2
− R2

2 ∑
i, j

∆i, j pi, j(T) , (6)

and the average number of native contacts or "native-state-overlap":

Q =
∑i< j ∆i, j pi, j

∑i< j ∆i, j
. (7)

The parameterpi, j must be evaluated self-consistently, that is:

pi, j =
〈

Θ
(

R2− (~r i, j −~r0
i, j)

2
)〉

0
, (8)
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where the average on the right depends onpi, j . This average can be calculated by the
integral:

pi, j =
1
Z

∫ N

∏
i=1

d3r i exp(−βH0)Θ(R2− (~r i, j −~r0
i, j)

2) , (9)

whereβ = 1/T andH0 is obtained from Eq. (4) upon substituting the functionsθi, j with
the parameterspi, j .

By defining~xi =~r i −~r0
i , this expression results in:

pi, j =
1
Z

∫ N

∏
i=1

d3r iΘ(R2− (~xi −~x j)
2)exp

[

R2

2T ∑
i, j

∆i, j

]

exp

[

−1
2∑

i, j
~xiMi, j~x j

]

, (10)

with the M the matrix defined by

(M)i, j = δi, j

(

K(2−δi,1 −δi,N)+
2
T ∑

l

∆i,l pi,l

)

+

+ (1−δi, j)

(

−K(δ j,i+1 +δ j,i−1)−
2
T

∆i, j pi, j

)

. (11)

The integral can be calculated by a Laplace Transform. By usingR2 as the variable t, we
need to calculate:

L ( f (t)) = L

[

∫ N

∏
i=1

d3xi Θ(t − (~xi −~x j)
2)exp

[

−1
2∑

i, j
~xiMi, j~x j

]]

, (12)

and developing the calculation:

L ( f (t)) =
1
s

∫ N

∏
i=1

d3xiexp

[

−1
2∑

i, j
~xiQi, j~x j

]

, (13)

with the new matrixQk,l = Mk,l +2(δk,l (δk,i +δk, j)−δk,iδl , j −δl ,iδk, j)s.
Now the integral is reduced to the same form as in the partition function, above. The

problem with matrixQ andM is that, due to the translational invariance~xi →~xi +~a of
the problem, the sum of the elements on each of their rows and columns is zero: this fact
yields a null determinant, producing a singularity in the evaluation of the averages.

We can follow McCammon and coworkers [8] to solve the problem by considering
and extra spring on the terminal residuesN: we add an extra term12γ~x2

N to the hamilto-
nian, that preserves the structure of the quadratic form of the hamiltonian, and hence the
form of the matrixM, but removes the translational invariance. The extra contribution to
the free energy can be explicitly calculated.

With this approach, after performing the gaussian integral and the inverse Laplace
transform, and restoring the variableR, the explicit expression of thepi, j reads:
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pi, j = − 2√
π

ρi, je
−ρ2

i, j +Erf(ρi, j) , (14)

with:

ρi, j =
R

√

2γi, j
γi, j = ((MN

N)−1)i,i +((MN
N)−1) j, j −2((MN

N)−1)i, j , (15)

where(MN
N)−1)i, j is the(i, j)-element of the inverse of the matrix obtained fromM upon

elimination of the Nth row and column. At any temperaturepi, j will be found iteratively
from the above expression, as described in [6].

We follow [6] in the choice of the parameters:R= 3, K = 1/15. The native contact
probability per residueQi are defined:

Qi =
∑ j ∆i j pi j

∑ j ∆i j
. (16)

In this study, we first setεi j = ε for eachi and j, and focus just on the geometry of the
apoflavodoxin native state: we aim at understanding how muchthe folding geometry
is responsible for the thermodynamics of the folding process, and how "trivial" the
resulting thermodynamic behavior appears, as compared to that of a random contact-
map.

To this end, we study the behavior of the model with several different contact maps:
the original, wild-type one, and many others, obtained by random reshuffling of each
residue’s contacts, in such a way that the connectivity of each residue (i.e., the number
of contacts it makes) is preserved, but the resultant geometry is completely random. This
most likely produces non-physical contact-maps, that violate geometric constraints, but
due to the nature of the model, where just deviations~x j from the equilibrium position are
relevant, the value of the thermodynamical information coming from such maps is not
affected, and we are allowed to compare the thermodynamic behavior of the different
cases.

Then, we perturb the models introducing a little differentiation among contacts,
choosing a subset and making them weaker, with their energy being 0.1ε: we want to
test in this way how the introduction of a "sequence" changes the results obtained for
the homogeneous case.

We choose the contacts to be weakened with three different patterns:

1. all contacts of residues in the region 94 - 124 (corresponding to a helix placed in
the surface of the native wild-type protein)

2. randomly chosen contacts (irrespective of the residues involved in the contact)
3. all contacts of residues in the region 57-60, 90-100, 120-139, that correspond to the

unfolded part of the thermal intermediate, according to experiments.

In the first case, there were 263 contacts, in the second one, 271 and in the last one, 243
contacts in real maps, and 285 contacts in the first case, 271 contacts in the second one
and 291 contacts in the last one for the reshuffled maps, out ofa total of 649 contacts
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in all cases. We performed the study with several samples of random contacts maps,
obtaining similar results: those reported in the following are typical results.

In Figure 4, 5 and 6 we observe energy, specific heath and average number of native
contacts (Eq. (7))for different groups of results.

Several comments are in order:

1. We cannot find important differences in the thermodynamic behavior obtained with
the original or the reshuffled map, in the homogeneous case of sameε. Even if a
quantitative van t’Hoff analysis cannot be carried on in this case, due to the nature
of the self-consistent approximation, if we still consider the ratio of the height by
the width of the peak of specific heat as a reasonable measure of cooperativity,
we see that the reshuffled and original map show practically the same degree of
cooperativity.

2. Things do not change if we weaken the same number of randomly-chosen contact in
the wild type and reshuffled geometry. As expected, the peak moves towards lower
temperatures (due to overall decrease of stability of the folded conformation) and
is somewhat shorter, but native and random geometry still produce almost identical
traces in all figures.

3. In the above two cases, a single peak is present in the specific heat, suggesting a
two-state behavior. This agrees with the simulations performed for the wild type
geometry in the homogeneous case (see following section). Things start changing
when we weaken all the contacts pertaining to a group of residues: we can see that
the specific heat traces of wild type and random geometry becomes increasingly
different as we move to weakening the region of the superficial helix 94-124 and
then to weakening the three experimentally relevant regions 57-60, 90-100, 120-
139. Moreover, the specific heats obtained with wild-type geometry starts showing
a small shoulder at low temperatures in the "helix" case, that becomes a clear peak
when the three different regions are weakened.

Thus, it seems that according to the geometry of apoflavodoxin, the model suggests
a two-state behavior. A three-state behavior only appears when we introduce different
energies for the contacts, roughly mimicking the energetic heterogeneity involved by the
sequence, and arrange the weak contacts in such a way that all the contacts of a group
of residues are weak. This supports the view that the specific sequence of wild type
apoflavodoxin has a central role for the existence of an equilibrium intermediate, a view
which agrees with the observation that the interface, between the three experimentally-
determined unstable regions and the bulk of the protein, is unusually polar.

In Figure 7 we can see, for different temperatures, the average number of contacts
of residuei that are still formed, for eachi (Eq. (16)), for the homogeneous wild-type
case. We can observe that, also at the transition temperature, when on average half of
the contact are formed, the fluctuation around the average are not very pronounced, due
to the "mean-field" nature of the self-consistent approximation. However, it is possible
to notice that the experimentally relevant regions correspond indeed to regions that are
predicted to be highly unfolded (lowQi). This is especially true for loops 57 - 60 and 120
- 139, while loop 90 - 100 is not as well represented. It should be noticed, though, that
these results are not sufficient to perform a safe prediction, on their basis, of the structure
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FIGURE 4. E versus T for different weakening patterns. In the legend, "weak helix", "weak random"
and "weak experiments" indicate that the choice of the weak contacts is made according to pattern 1, 2 or
3 in the text, respectively.

of the intermediate. This could be expected, in the light of the above results, since we
have seen that the introduction of energetic heterogeneityis necessary to reproduce
three-state behavior.

C.- Extended GNM with contact breaking: Langevin dynamics

In this section, we study the Langevin dynamics of the extended GNM model de-
scribed by equation (4). This study will allow us to validatethe results previously ob-
tained and to explore the space of configurations in a more realistic way. Within other
important things, the dynamics will show us the manner the contacts break when the
system is embedded in a stochastic thermal reservoir at temperatureT.

The equations of the motion read as:

q̇i(t) = pq,i/m ; ṗq,i(t) = −∂H
∂qi

− γ pq,i(t)+ηq,i(t) , (17)

wherei is theCα index andq = x,y,z.
In these equations, we control the temperature trough the stochastic termηq,i(t) which

is a Gaussian distributedδ -correlated random noise:

〈ηq,i(t)ηq, j(0)〉 = 2γmkBTδ (t)δi, j , (18)

143



0 5 10 15 20 25 30
T

200

300

400

500

600

C
v

1 ftg WT

random map WT

1ftg weak helix

random map weak helix

1 ftg random weak

random map random weak

1 ftg weak experiments

random map weak experiments

FIGURE 5. Cv versus T for different weakening patterns. In the legend, "weak helix", "random weak"
and "weak experiments" indicate that the choice of the weak contacts is made according to pattern 1, 2 or
3 in the text, respectively.

where,kB denotes the Boltzmann constant andT is the temperature (for the sake of
simplicity, bothkB andm have been set to unity).

Along a trajectory, we have computed the values of some of thevariables previously
defined: the native-state-overlapQ(T) (Eq. (7)), or the native contact probability per
residueQi(T)(Eq. (16)) for instance.

In Figure 8, we can see the value ofQi for each residue in the protein. Once more, it is
shown that the regions more amenable to broke their contactsare those which are found
in experiments; that is, loops 57 - 60, 90 - 100 and 120-139.

One should note that temperature for unfolding obtained in Langevin simulation is
much lower than that calculated in the self-consistent method. This is due to the fact
that, since self-consistency introduce a kind of mean field approximation, it can not
take into account the large fluctuations observed in the simulations. Indeed, within self-
consistent approximation the contacts are never actually broken, except in the case when
the correspondingpi j is strictly zero: therefore, also in the denaturated conformations,
there is a small quadratic bias toward the native conformation. This results in the need of
a higher temperature to produce the same degree of unfoldingthat we get in simulations
of the original model.

Hovewer, if we consider the results at the respective transition temperatures, we can
establish a correlation between the results found with these simulations and with self-
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consistent approximation made in previous subsection.
In order to find it, we use Pearson correlation coefficient. Ifwe have two sets of N

data,xi andyi , then the Pearson correlation coefficient is calculated as:

rx,y =
∑i(xi − x̄)(yi − ȳ)

(N−1)sxsy
, (19)

wherex̄ andȳ are the sample means of each of the data sets, andsx andsy are the standard
deviations.

The coefficient can take values from -1 and 1. Conventionally,absolute value of
correlation less than 0.1 indicates no correlation. The correlation is small between 0.1
and 0.29, medium from 0.3 to 0.49, and large above 0.5.

We want also to mention that for the sets of data corresponding to self-consistent
calculations and Langevin dynamics at the respective transition temperatures, the value
of the correlation coefficient is 0.97, indicating that the self-consistent approximation
correctly grasps the relevant physics of the model, despitethe difference in the numeric
values.
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D.- All-atoms simulation

Finally, we analyze the unfolding of the protein using a complete description of
the structure by mean of all-atom molecular dynamics (MD) simulations. Since this
technique is computationally expensive, we restrict ourselves to only two temperatures.

Simulations were performed using NAMD[9] on a 16 parallel processor cluster. A
CHARMM27[10] force field was used, with a cutoff of 12Å for non-bonded interactions.
Protein was embedded in a water sphere of 31Å, large enough toavoid edge effects along
the simulation run. Langevin dynamics with a friction coefficient of 5ps−1 was run up to
3 ns. Two different temperatures, 310K and 600K, were simulated. The first one, in order
to check the stability of the protein with the simulation parameter used. The second, to
induce a fast thermal unfolding and to observe the pathway followed in the process.

After simulation we extract the global RMSD (figure 9) and the RMSD per residue
(figure 10). Figure 9 shows the fast unfolding at high temperature whereas the native
structure remains stable giving confidence to the simulations. In figure 10 we observe
the residues that contribute mostly to RMSD. From the maxima and minima of RMSD of
each residue, we corroborate that previous methods identifies more active and less active
zones. In agreement with the previous findings, the loops arethe most mobile zones, and
the first to loose their native structure when we perform a thermal denaturation.
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CONCLUSION

We have used two mesoscopic network models to make a statistical mechanics study
of the apoflavodoxin unfolding. Within the GNM framework, wehave obtained regions
which are correlated in their motions. This analysis reveals that loops 57-60, 90-100 and
120-139 are the more flexible protein regions. Using the extended GNM with contact
breaking we have obtained the thermal behavior of the unfolding process. This model has
been studied with two approaches: a self-consistent methodand the Langevin dynamics
of the same system. With both methods, we find that the residues that break first the
native contacts correspond to those which present high flexibility in the GNM analysis.
Finally, preliminary all-atoms MD simulations supports the above findings .

At present, we can neither precise the structure of the intermediate nor support with
evidence the hypothetical intermediate proposed in [1]. Tothis end, further refinement
of the model, including the introduction of sequence heterogeneity, is necessary. Such
work is under present development. However, our results point in the right direction,
allowing to mark the regions in the protein candidates to be broken in the equilibrium
intermediate, and possibly suggesting new experiments focused on other unexplored
regions.
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