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Optimizing diffusion in multiplexes by maximizing layer dissimilarity
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Diffusion in a multiplex depends on the specific link distribution between the nodes in each layer, but also
on the set of the intralayer and interlayer diffusion coefficients. In this work we investigate, in a quantitative
way, the efficiency of multiplex diffusion as a function of the topological similarity among multiplex layers. This
similarity is measured by the distance between layers, taken among the pairs of layers. Results are presented
for a simple two-layer multiplex, where one of the layers is held fixed, while the other one can be rewired in a
controlled way in order to increase or decrease the interlayer distance. The results indicate that, for fixed values of
all intra- and interlayer diffusion coefficients, a large interlayer distance generally enhances the global multiplex
diffusion, providing a topological mechanism to control the global diffusive process. For some sets of networks,
we develop an algorithm to identify the most sensitive nodes in the rewirable layer, so that changes in a small set
of connections produce a drastic enhancement of the global diffusion of the whole multiplex system.
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I. INTRODUCTION

Multilayer networks have been the focus of intense research
in recent times [1,2]. Such interest arises mainly from the
necessity of exploring new emergent properties in networks
whose backbone is formed by different types of connec-
tions [3–5]. Many aspects of network theory have been recently
revisited under the paradigm of multilayer systems. These
features cover the stability of technological interdependent
networks that has caused a catastrophic breakdown of energy
distribution [6], mathematical aspects related to their spectral
properties [7,8], and critical phenomena [9].

During recent years, most of the attention has been devoted
to a particular class of multilayer networks called multiplexes.
A multiplex is a multilayer structure formed by M layers, each
of them being itself a network [5,10,11] and containing exactly
the same quantity, N , of nodes. This way, we can represent
systems in which a set of N nodes can be connected through
links of M types. Such a feature can be effectively observed in
a series of actual complex systems, e.g., a set of airports that
are connected by different airlines, each one with its own set
of flights connecting a common pool of destinations [12,13].
The same is observed for a group of individuals that may
communicate with each other through different media [14]
or use different communication means with the same set of
locations [15–17].

To assemble a multiplex (see Fig. 1), we represent each of
the N entities (airports, individuals, locations, etc.) in each of
the M layers, so that for each entity there are M nodes (one per
layer) that represent it. Each of the N nodes in a layer is directly
connected to its M − 1 counterparts in the other layers as they
represent the same entity while the rest of the connections are
established within the layer to which they belong.

The particular form of multiplexes and its ubiquity as
the backbone of real complex systems has motivated the
development of a mathematical framework for their treat-
ment [11]. This has helped the analysis of the emergence
of collective behavior such as percolation [18–20], epi-
demics [21–26], coordination [27,28], cooperation [29–32],
and synchronization [33–36], among others [37]. In many

cases, these studies have shed light on the new physical
phenomena that the coupling between the interaction layers
of the multiplexes induces to the collective behavior of such
systems [38].

A general issue related to multiplex systems is the un-
derstanding of diffusive processes on such a structure, and,
particularly, its relation to the diffusive properties of each
interaction when considered independently [39]. Multiplex
diffusion depends on diffusion within each individual layer,
α = 1,2, . . . ,M , but also on the interlayer diffusion coeffi-
cients Dα,β . If these are all set to zero, multiplex diffusion
is restricted to each specific layer, depending only on the
specific link distribution in that layer and on the intralayer
diffusion coefficients. In the other extreme, the full potential
of the multiplex is reached when all Dα,β ̸= 0, which allows a
direct connection between any pair of layers. Therefore, it is
quite a difficult task to predict, in a general way, how a global
multiplex diffusive process depends on each of the individual
intralayer counterparts.

In this work, we propose to relate the efficiency of the global
multiplex diffusion to a quantitative measure for the difference
between the topological structure of any pair of layers in the
multiplex. In a single layer α, the diffusion efficiency, which
depends on the intralayer diffusion coefficient Dα and on the
network topology, is usually expressed in terms of the smallest
nonzero eigenvalue λα

2 of the corresponding Laplacian matrix
Lα [40]. Similarly, multiplex diffusion is expressed by $2, the
smallest nonzero eigenvalue of the supra-Laplacian matrix, as
will be detailed in the next section. Thus, we investigate how
$2 depends on the dissimilarity between layers, measured
through the network distance introduced in [41]. In particular,
for a multiplex, we can evaluate M(M − 1)/2 values δ(α,β)
corresponding to the distance between a pair of layers α and β.
For the sake of a clearer presentation of our results, we restrict
our analysis to the simplest situation of an M = 2 multiplex
to follow in a close way the relation between $2 and the layer
distance δ while proceeding with a controlled rewiring of one
of the networks.

The rest of this work is organized as follows: In Sec. II,
we show how to describe a diffusion process in a multiplex by
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