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Reaction–diffusion processes1 have been widely used to 
study dynamical processes in epidemics2–4 and ecology5 in 
networked metapopulations. In the context of epidemics6, 
reaction processes are understood as contagions within each 
subpopulation (patch), while diffusion represents the mobil-
ity of individuals between patches. Recently, the characteris-
tics of human mobility7, such as its recurrent nature, have been 
proven crucial to understand the phase transition to endemic 
epidemic states8,9. Here, by developing a framework able to 
cope with the elementary epidemic processes, the spatial dis-
tribution of populations and the commuting mobility patterns, 
we discover three different critical regimes of the epidemic 
incidence as a function of these parameters. Interestingly, we 
reveal a regime of the reaction–diffussion process in which, 
counter-intuitively, mobility is detrimental to the spread of 
disease. We analytically determine the precise conditions for 
the emergence of any of the three possible critical regimes in 
real and synthetic networks.

Epidemic processes in complex networks have attracted the 
attention of physicists during the last two decades6. Several out-
standing results have been the consequence of a mathematical 
analysis that borrows ideas from other physical processes. In par-
ticular, epidemic spread in networks can be thought of as reaction–
diffusion processes, referring to the change of the concentration of 
two or more types of element: local reactions in which the elements 
are transformed into each other, and diffusion that causes the sub-
stances to spread out over the available space. In epidemiology, the 
elements in play are the subjects (humans or animals), character-
ized by their states in the evolution of the sickness (for example, 
susceptible, infected, recovered and so on). In complex networks, 
the reaction phase corresponds to the infections produced by the 
local interaction of subjects within a subpopulation (node), and the 
diffusion phase corresponds to their mobility through the network 
according to the connections (links) between nodes.

This approach to epidemic spread using reaction–diffusion 
processes, usually referred to as metapopulation models, has been 
largely studied in network science10–14; however, several challenges 
remain open15,16. The most representative of these challenges, from 
a physicist’s perspective, is to complement large-scale agent-based 
simulations17–19, by deriving models amenable to mathematical 
analysis20 that capture the influence of human behaviour21 and the 
existence of complex social structures.

Our proposal to fill this gap is to formulate a general ‘micro-
scopic’ Markovian model describing the metapopulation reac-
tion–diffusion dynamics. We start by analysing, at the individual 
level, the probabilities of infection in the scope of the susceptible–
infected–susceptible (SIS) epidemic model12. We denote as λ and 
μ the infection and recovery probabilities respectively. This way, a 
susceptible (S) individual is infected with probability λ when inter-
acting with an infected (I) subject. In turn, infected (I) individuals 
become susceptible (S) again with probability μ. Note that if there is 
no recovery (that is, μ =  0), the phenomenology we will report does 
not hold.

Motivated by the recurrent (commuting) nature of most urban 
and regional movements reported and modelled8,9, let us explain 
two key assumptions of our model. First, we assume that each indi-
vidual is associated with a certain subpopulation (her residence). 
Second, to incorporate the recurrence of human mobility patterns, 
we force all of the agents who have decided to move from their res-
idence to return to them after each time step. This way, given N 
subpopulations (nodes), the variable ρi(t) (i =  1,..., N) denotes the 
fraction of infected individuals associated with node i at time t. The 
time evolution of ρi(t) is as follows:

ρ μ ρ ρ Π+ = − + −t t t t( 1) (1 ) ( ) (1 ( )) ( ) (1)i i i i

where the first term in the right-hand side denotes the fraction of 
infected individuals associated with i that do not recover and the 
second term accounts for the fraction of healthy individuals associ-
ated with i that pass to infected at time t +  1. In this second term,  
Π i(t) is the probability that a healthy individual associated with 
node i becomes infected at time t. This probability reads:
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where pd denotes the probability of moving and Wij denotes the 
weight of the connection between nodes i and j. The first term in the 
right-hand side denotes the probability that a susceptible individual 
associated with node i becomes infected when remaining at node i, 
and the second one accounts for the probability that this individual 
catches the disease when moving to any neighbour of i. In addition, 
Pi(t) denotes the probability that a healthy individual in (but not 
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