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Characterization of hunter-gatherer networks and 
implications for cumulative culture
A. B. Migliano1*, A. E. Page1, J. Gómez-Gardeñes2, G. D. Salali1, S. Viguier1, M. Dyble1, J. Thompson1, 
Nikhill Chaudhary1, D. Smith1, J. Strods1, R. Mace1, M. G. Thomas3, V. Latora4 and L. Vinicius1

Social networks in modern societies are highly structured, 
usually involving frequent contact with a small number of 
unrelated ‘friends’1. However, contact network structures in 
traditional small-scale societies, especially hunter-gatherers, 
are poorly characterized. We developed a portable wireless 
sensing technology (motes) to study within-camp proxim-
ity networks among Agta and BaYaka hunter-gatherers in 
fine detail. We show that hunter-gatherer social networks 
exhibit signs of increased efficiency2 for potential information 
exchange. Increased network efficiency is achieved through 
investment in a few strong links among non-kin ‘friends’ con-
necting unrelated families. We show that interactions with 
non-kin appear in childhood, creating opportunities for col-
laboration and cultural exchange beyond family at early ages. 
We also show that strong friendships are more important than 
family ties in predicting levels of shared knowledge among 
individuals. We hypothesize that efficient transmission of 
cumulative culture3–6 may have shaped human social networks 
and contributed to our tendency to extend networks beyond 
kin and form strong non-kin ties.

We studied in-camp proximity networks (within and between 
households) as a proxy for social interactions in two hunter-gath-
erer populations from Africa and southeast Asia. We developed a 
portable wireless sensing technology (motes; Fig.  1) to record all 
dyadic interactions within a radius of approximately 3 metres at 
2-minute intervals for 15 hours a day (05:00–20:00) over a week, in 
six Agta camps in the Philippines (200 individuals, 7,210 recorded 
dyadic interactions) and three BaYaka camps in Congo-Brazzaville 
(132 individuals, 3,397 dyadic interactions; see Supplementary 
Table 1 with descriptive statistics for all camp networks). We  
built high-resolution proximity networks mapping the totality of 
close-range interactions within each camp. In hunter-gatherers 
(who lack technology-aided communication), close proximity is 
an indicator of joint activities such as foraging7, parental care8 and 
information exchange4.

To investigate a possible relationship between social structure 
and cultural exchange, we estimated the ‘global network efficiency’2 
of our proximity networks. This is a measure of how the proper-
ties of a network can aid information flow amongst its individuals 
(nodes) irrespective of whether exchange of information actually 
occurs, and is therefore a structural property independent from the 
nature of the information flow. For example, when planning a new 
town, engineers may want to compare alternative configurations 
of road systems and select the one that minimizes average distance 

or travelling time between any two points, irrespective of mode of 
transport. Global network efficiency provides a measure of ease 
of transmission across a network, and has been applied to studies  
of social networks as well as power grids, phone networks, neural 
systems and transportation networks2, among others.

To estimate global network efficiency, we first built weighted 
social networks using our motes proximity data from Agta and 
BaYaka camps (Fig. 2a and Supplementary Fig. 1), and subdivided 
the networks into three decreasing levels of relatedness: close kin 
(parents, children, siblings, partners), extended family (grandpar-
ents, grandchildren, aunts, uncles, nieces, nephews, first cousins, 
parents-in-law, siblings-in-law) and non-kin (see Methods for 
details of kin categorization, and Supplementary Tables 2 and 3 for 
percentages of links for each kin category and age groups). We esti-
mated the contribution of each relatedness level to global network 
efficiency by comparing our hunter-gatherer network structures 
with randomly permuted networks (the baseline for estimation of 
efficiencies of real networks). Our randomization procedure does 
not modify the total number of links (edges), sum of all link weights 
(number of recorded interactions for each dyad) or degree (number 
of links) of each node, but randomly shuffles links among nodes 
within each level of relatedness. For example, when randomizing 
the non-kin network, we preserve the number of non-kin links from 
each individual (number of friends) but redistribute their target 
nodes (identity of their friends). Since our networks are weighted 
(as each dyad may have been in close proximity multiple times  
during the one-week interval), random reshuffling of links also 
changes the strength of friendships. For each of the three categories 
of relatedness, we created an ensemble of 1,000 randomized graphs 
(see Methods for procedures). The average global efficiency of the 
randomized ensemble was then compared with the global efficiency 
of the corresponding observed networks for each camp.

Our analyses show that randomization of interactions among 
either close kin or extended family (including affinal kin) does not 
affect the global efficiency of hunter-gatherer networks. In contrast, 
randomization of non-kin relationships (friends) greatly reduces 
global network efficiency (Fig.  2b, and Supplementary Fig. 2  
for other camps) both in the Congo-Brazzaville and the Philippines 
camps (Fig. 2c). The reason is that randomization of non-kin links 
homogenizes their weights, eliminating strong friendships from 
networks. This is not observed in the case of randomization of close 
kin and distant kin links, which do not exhibit the same levels of the 
heterogeneity in strength of links. Therefore, increased global effi-
ciency in our networks results from investing in a few strong ‘close 
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Stage B: redistributing weights to the new adjacency matrix.
5. Each node i has a total number of beacons equal to its strength si (the sum 

of the weights of all its links). Each of these beacons is randomly reallocated 
with uniform probability to one of the ki new neighbours.

Steps (1–5) are repeated for each node and for each of its links.
Next, we considered the network with close kin and extended family  

links, and then randomized only extended family links according to the  
procedure above. Finally, we considered the network with close kin, extended 
family and non-kin links, and randomized only non-kin links. For each  
of the three cases, we used M =  100 iterations, and we created an ensemble  
of 1,000 randomized graphs. The average global efficiency obtained for the 
ensemble of randomized graphs was compared with the global efficiency of the 
real networks at the three relatedness levels for each camp. We also performed 
randomizations preserving household structure, where for each level of dyadic 
relatedness (close kin, extended family and non-kin) we checked whether the 
original dyad was within or between households, and only allowed randomization 
to occur respectively within or between households. Results remained mostly 
unchanged (Supplementary Fig. 3).

Network transitivity. Since our networks are weighted, we measured  
transitivity (a measure of local efficiency) as the total strength of the triads  
found in our network. To do this, we calculated the third power of the weighted 
adjacency matrix. The element i,j of the resulting matrix A3 measures the  
strength of the walks of length 3 starting from node i and reaching node j.  
In this way, the ith element of the diagonal of matrix A3 gives the total strength 
of a closed triad starting and ending at node i. Summing all the elements of the 
diagonal (that is, computing the trace of A3) and dividing by 6, since each triad is 
counted twice (once in each direction) for each of its three nodes, we obtain the 
total strength of the triads, the transitivity of the weighted network:
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As in the case of global efficiency, the values of network transitivity of the 
hunter-gatherer real networks were compared with the averages obtained for 
randomized ensembles.

Data availability. The data that support the findings of this study are available 
from A.B.M. upon request.
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