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of these networks presents some difficulties over the analysis 
of networks with only one type of interactions, being neces-
sary the use of new methodologies or theoretical frameworks 
(like the use of multilayer networks, Mucha et al. 2010, 
Boccaletti et al. 2014, Kivelä et al. 2014). Networks which 
include positive and negative links are called signed networks 
and have been mostly considered theoretically (Harary et al. 
1953, Zaslavsky 1982, Traag and Bruggeman 2009) and 
used to study social networks (Leskovec et al. 2010, Szell  
and Thurner 2010, Szell et al. 2010, Facchetti et al. 2011), 
while being ignored in other contexts such as ecological 
systems.

Signed networks exhibit a property called structural 
balance, which is based on how nodes organize in subgroups 
within the network (Cartwright and Harary 1956). A signed 
network is said to be balanced if it can be partitioned into 
groups of nodes in such a way that 1) every pair of con-
nected nodes within the same group share a positive link, 
and 2) links between nodes within different groups have a 
negative sign (Doreian and Mrvar 2009). Structural balance 
is associated with the resilience of social networks because 
it prevents the appearance of conflicts that might disrupt 
the system (Cartwright and Harary 1956). However, real 
networks rarely organize in a perfectly balanced way (i.e. 
some links do not fulfill the criterion for structural balance), 
and the deviation from perfect balance is called ‘frustration’ 
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The use of network science to study ecological communities 
has become a rising trend in recent times (Heleno et al. 2014, 
Kissling and Schleuning 2015). Networks allow the analysis 
of the interaction patterns among the elements of complex 
systems (Albert and Barabási 2002, Newman 2003) and the 
role of the structural organization in the functioning of these 
systems (Boccaletti et al. 2006). Thus, it is not surprising 
that networks are nowadays a common tool to study the 
organization of biotic interactions in real ecosystems (Ings 
et al. 2009). However, despite of the advances achieved 
by applying networks to ecosystems, most of ecological 
networks are usually built attending only to one particular 
type of interaction between species, which could frequently 
represent an oversimplification of the true functioning of 
real communities.

In ecological communities, living organisms can inter-
act with others positively (e.g. mutualistic and facilitative 
interactions) or negatively (e.g. competitive and parasitic 
interactions); and commonly these types of interactions 
occur at the same time within a given community (Kéfi 
et al. 2012, 2015). In ecology, however, there have been 
few empirical examples that have considered multiple types 
of interactions within the same network, probably because 
of the high logistic effort involved in documenting all the 
potential interactions present within a community (Melián 
et al. 2009, Pocock et al. 2012). Furthermore, the analysis 
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between species. Then, we evaluated whether those networks were in balance, a hypothesis commonly formulated for real 
signed graphs but never tested in systems other than social networks. Specifically, we quantified the global and the local 
structural balance in the networks. We found that plant community networks were more balanced than expected by chance, 
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pattern was consistent among all of the types of the plant communities examined, which suggests that configurations that 
promote structural balance might be common in ecological signed networks. We also found that almost all networks had 
some unbalanced components, which might be responsible for the adaptation of the system. Mechanisms behind these 
structure and possible applications for community ecology are discussed. Our results encourage testing structural balance 
in other ecological networks to confirm if it is a widespread architecture of natural systems.
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